ALGEBRAIC FUNCTIONS OF NORMAL OPERATORS*

BY S. R. FOGUEL

ABSTRACT

The solutions of $p(T) = S$, where S is normal and p a polynomial, are described.

Let p be a polynomial of degree $n p(z) = z^n + a_1 z^{n-1} + \cdots + a_0$. Let $u_1 \cdots u_k$ be the different solutions of $p'(z) = 0$ ($k \leq n - 1$) and put $v_i = p(u_i)$. If $w \neq v_i$ then $p(z) = w$ has *n* different solutions $z_1(w), \dots, z_n(w)$ and we shall assume

The functions zi(w) are measurable.

It is possible to construct such measurable roots see $[2,$ Lemma 3.1]. Let S be a normal operator on the Hilbert space H and $E(\cdot)$ the spectral measure of S.

THEOREM. Let $v_i \notin \sigma(S)$ i = 1, \cdots , k. The bounded operator T satisfies $p(T) = S$ *if and only if*

(1)
$$
T = \sum_{i=1}^{n} F_i \int z_i(w) E(dw) F_i^2 = F_i, F_i F_j = 0 \quad i \neq j, \sum_{i=1}^{n} F_i = I
$$

and $F_i S = S F_i$.

Proof. For any $w \in \sigma(S)$

$$
p(z) - w = (z - z_1(w)) \cdots (z - z_n(w))
$$

hence

$$
p(T) - w = (T - z_1(w)) \cdots (T - z_n(w)).
$$

Now T commutes with $S = p(T)$ hence with $E(\cdot)$. Integrate the last equation, using the multiplicativity of $E(\cdot)$ to derive

(a) $0 = p(T) - S = (T - \int z_1(w)E(dw)) \cdots (T - \int z_n(w)E(dw)).$ Also

$$
p'(z) = \sum_{j=1}^{\infty} \prod_{i \neq j} (z - z_i(w))
$$
 hence $p'(T) = \sum_{j=1}^{\infty} \prod_{i \neq j} (T - z_i(w))$

again integrate

(b) $p'(T) = \sum_{j=1}^{n} \prod_{i \neq j} (T - \int z_i(w) E(dw)).$ Now $p'(T)^{-1}$ exists since $v_i \notin \sigma(S)$. Put $F_j = p'(T)^{-1} \mid_{\mathcal{U}^{\#} j}(T - \int z_i(w)E(dw)$.

Received, December 22, 1967.

^{*} This work was supported, in part, by Grant GP-3628 of the National Science Foundation.

Note that $F_i F_j = 0$ by (a) and $\sum F_i = I$ by (b). Thus $F_i^2 = F_i \sum_{i=1}^n F_i = F_i$. Finally $(T - \int z_i(w)E(dw))F_i = 0$ by (a) hence $T = \sum TF_i = \sum F_i \int z_i(w)E(dw)$. It is clear that any operator of the form (1) solves $p(T) = S$.

The same argument works for S a scalar operator in the sense of N. Dunford. A different representation can be obtained by using Theorem 1 of [5]. Thus let $A > 0$ satisfy: $A^{-1}F_iA$ and $A^{-1}E(\cdot)A$ are self adjoint projections. Now

$$
A^{-1}E(\alpha)A = (A^{-1}E(\alpha)A)^* = AE(\alpha)A^{-1}
$$

or A^2 commutes with $E(\alpha)$ thus the spectral measure of A^2 commutes with $E(\alpha)$ and so does $A(A > 0)$.

Put $\tilde{F}_i = A^{-1}F_iA$ to replace (1) by

(2)
$$
T = A \sum_{i=1}^{n} \int z_i(w) E(dw) \tilde{F}_i A^{-1}
$$

where \tilde{F}_i are self adjoint projections, $\tilde{F}_i \tilde{F}_j = 0$ $i \neq j$, $\sum \tilde{F}_i = I$, $S \tilde{F}_i = \tilde{F}_i S$ and *SA = AS.*

Note that \tilde{F}_i does not have to commute with A.

REMARK. The form (1) was obtained by J. G. Stampfli [3], for roots of scalar operators ($T^n = S$ where S is scalar). The form (2) was obtained by L. Wallen [4], for roots of unitary operators $(T^n = S$ where S is unitary).

If the multiplicity of S is greater than 1 it is easy to construct examples with $F_i \neq F_i^*$ (or $A\widetilde{F}_i \neq \widetilde{F}_iA$).

Let us consider the case where $\sigma(S)$ contains v_i .

Let α_m be disjoint Borel sets whose union is $\sigma(S) - \langle v_1, \dots, v_k \rangle$. Then if $p(T) = S$ we get

$$
p(TE(\alpha_m)) = SE(\alpha_m)
$$

$$
p(TE(\langle v_i \rangle)) = v_i E(\langle v_i \rangle).
$$

Thus by the Theorem on $E(\sigma(S) - \langle v_1 \cdots v_k \rangle)H$

$$
T = \sum_{m=1}^{\infty} \sum_{i=1}^{n} \int z_i(w) E(dw) F_{i,m} E(\alpha_m)
$$

but $\sum_{m} F_{i,m} E(\alpha_m)$ is not necessarily bounded, or

$$
T = \sum_{m=1}^{\infty} \sum_{i=1}^{n} \int z_i(w) E(dw) A_m \widetilde{F}_{i,m} A_m^{-1} E(\alpha_m)
$$

where $\sum A_m E(\alpha_m)$ is not necessarily bounded. Finally as on $E(\langle v_i \rangle)H$ the solutions of $p(T) = v_i$ are probably known, let us describe them for completeness sake.

If $p(u_1) = \cdots = p(u) = v_i$ then $\sigma(T) \subset \langle u_1 \cdots u \rangle$

$$
T = \sum u_j G_j + N = T_1 + N
$$

where G_i is the projection obtained by integrating $(\lambda - T)^{-1}$ on a small circle around u_j and N is a quasi nilpotent that commutes with them, also by [1 Theorem 9]

$$
v_iI = p(T) = p(T_1) + Np'(T_1) + \dots + \frac{N^n}{n!} p^{(n)}(T_1)
$$

or

$$
N\left(p'(T_1) + \cdots + \frac{N^{n-1}}{n!} p^{(n)}(T_1)\right) = 0.
$$

 N^{n-1} nus if $p'(u_i) \neq 0$ then on G_iH the operator $p'(T_1) + \cdots + \frac{p^{(n)}(T_n)}{n!}$ has an inverse or $NG_i = 0$. If $p'(w_i) = 0$ and $p''(w_i) \neq 0$ then on G_i

$$
N^{2}\left[\frac{p''(T_{1})}{2}+\cdots+\frac{N^{n-2}}{n!}p^{(n)}(T_{1})\right]=0
$$

and again $N^2G_i = 0$. Finally a zero of $p(z) - v$ is of order not greater than $n - 1$ and thus $N^n = 0$.

REFERENCES

1. N. Dunford, *Spectral operators,* Pacific J. of Math. 4 (1954), 321-354.

2. S. R. Foguel, *Normal operators of finite multiplicity,* Comm. Pure and Appl. Math. ll (1958), pp. 297-313.

3. J. G. Stampfli, *Roots of scalar operations,* Proc. Amer. Math. Soc. 13 (1962), pp.796-798.

4. L. Wallen, *On the continuity of a class of unitary representation,* to be published.

5. J. Werner, *Commuting spectral measures on Hilbert space,* Pacific J. of Math. 4 (1954), 355-351.

THE HEBREW UNIVERSITY OF JERUSALEM AND

THE UNIVERSITY OF MICHIGAN,

ANN ARBOR, MICHIGAN